Phases of Matter:

Solid
Matter that has definite volume and shape.
The molecules are packed together tightly and move slowly.

Liquid
Matter that has definite volume but not shape.
Since the molecules of a liquid are loosely packed and move with greater speed, a liquid can flow and spread out.

Gas
Matter that has no definite volume or shape.
Molecules of a gas are so loosely arranged and move so rapidly that they will fill their container.

Phase Change Descriptions:

Melting
the change from solid to liquid.

Freezing
the change from liquid to solid.

Vaporization
the change from liquid to gas.

Evaporation
vaporization from the surface of a liquid.

Boiling
vaporization from within as well as from the surface of a liquid.

Condensation
the change from gas to liquid.

Sublimation
the change from solid to gas.

Deposition
the change from gas to solid.

Fill in the phase changes in the blank provided.
Heating Curve

Phase Change Diagram

B = ____________________________
- temperature at which ________ intermolecular bonds are broken, turning substance into a liquid.

 Melting, also known as ________________

What does intermolecular mean?? ___

D = ____________________________
- temperature at which ________________ intermolecular bonds are broken, turning substance into a gas.

 Boiling, also known as ____________________
<table>
<thead>
<tr>
<th>Section</th>
<th>What’s Happening</th>
<th># of Phases Present</th>
<th>PE or KE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The graph was drawn from data collected as a substance was heated at a constant rate. Use the graph and vocabulary from first page to answer the following questions.

At **point A**, the beginning of observations, the substance exists in a solid state. Material in this phase has _______________ volume and _______________ shape. With each passing minute, _______________ is added to the substance. This causes the molecules of the substance to _______________ more rapidly which we detect by a _______________ rise in the substance. At **point B**, the temperature of the substance is ______°C. The solid begins to _______________. At point C, the substance is completely _______________ or in a _______________ state. Material in this phase has _______________ volume and _______________ shape. The energy put to the substance between minutes 5 and 9 was used to convert the substance from a _______________ to a _______________.

Between 9 and 13 minutes, the added energy increases the _______________ of the substance. During the time from **point D to point E**, the liquid is _______________. By **point E**, the substance is completely in the _______________ phase. Material in this phase has _______________ volume and _______________ shape. The energy put to the substance between minutes 13 and 18 converted the substance from a _______________ to a _______________ state. Beyond **point E**, the substance is still in the _______________ phase, but the molecules are moving _______________ as indicated by the increasing temperature.