
| I. KINETICS AND EQUILIBRIUM |                                                                                                         |     |                                                                              |  |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------|--|--|--|
|                             | Knowledge Application                                                                                   |     |                                                                              |  |  |  |
| 0                           | The <b>Collision Theory</b> states that a chemic                                                        |     |                                                                              |  |  |  |
|                             | <b>particles</b> collide with the proper energy an                                                      |     |                                                                              |  |  |  |
|                             |                                                                                                         | 0   | Use the Collision Theory to explain how                                      |  |  |  |
|                             |                                                                                                         |     | factors such as temperature, surface area,                                   |  |  |  |
| 0                           | The <b><u>rate</u></b> (speed) of a chemical reaction                                                   |     | and concentration influence the rate of reaction                             |  |  |  |
|                             | depends on several factors: temperature,<br>concentration, nature of reactants, surface                 |     | <i>Ex:</i> Increasing the temperature, surface                               |  |  |  |
|                             | area, and the presence of a <u>catalyst</u> .                                                           |     | area, or concentration all lead to an                                        |  |  |  |
| 0                           | Ionic compounds generally react faster                                                                  |     | increase in the rate of a reaction because                                   |  |  |  |
| -                           | than covalent (molecular) compounds                                                                     |     | they all increase the <b><u>number of effective</u></b>                      |  |  |  |
| 0                           | A catalyst provides an alternate reaction                                                               |     | collisions between reactant particles.                                       |  |  |  |
|                             | pathway, which has lower <b><u>activation</u></b>                                                       | 0   | Explain, in terms of the number of bonds                                     |  |  |  |
|                             | <b>energy</b> than an uncatalyzed reaction.                                                             |     | broken, why ionic compounds generally react                                  |  |  |  |
|                             |                                                                                                         |     | faster than covalent compounds                                               |  |  |  |
|                             |                                                                                                         | 0   | Explain how a catalyst speeds up a reaction                                  |  |  |  |
| 0                           | Energy released or absorbed during a                                                                    | 0   | Read and interpret a potential energy                                        |  |  |  |
|                             | chemical reaction can be represented by a                                                               |     | diagram<br>Draw and label the following parts of a                           |  |  |  |
|                             | potential energy diagram.                                                                               | 0   | Draw and label the following parts of a potential energy diagram for both an |  |  |  |
| 0                           | The difference in PE of the products and                                                                |     | endothermic and exothermic reaction                                          |  |  |  |
|                             | reactants is called the <u>heat of reaction</u>                                                         |     | € PE of reactants and PE of products                                         |  |  |  |
|                             | <u>(ΔH)</u>                                                                                             |     | € heat of reaction ( $\Delta$ H)                                             |  |  |  |
|                             | $\Delta H = PE \text{ products} - PE \text{ reactants}$                                                 |     | € activation energy (for both the <b>forward</b>                             |  |  |  |
| 0                           | $\Delta$ H values for many chemical reactions                                                           |     | and reverse reactions)                                                       |  |  |  |
|                             | are listed in Table I                                                                                   |     | € activation energy with a catalyst present                                  |  |  |  |
| 0                           | At equilibrium, the rate of the <b>forward</b>                                                          | 0   | Describe what is happening to the                                            |  |  |  |
|                             | <u>reaction</u> equals the rate of the <u>reverse</u>                                                   |     | concentrations or amounts of reactants and                                   |  |  |  |
|                             | <b>reaction</b> and the measurable quantities                                                           |     | products in a system at equilibrium                                          |  |  |  |
|                             | of reactants and products remain constant                                                               | 0   | Describe the rates of opposing reactions in a                                |  |  |  |
| 0                           | at equilibrium<br><b>LeChatelier's principle</b> can be used to                                         |     | system at equilibrium                                                        |  |  |  |
| 0                           | predict the effect of a <b><u>stress</u></b> (such as a                                                 |     |                                                                              |  |  |  |
|                             | change in pressure, volume,                                                                             |     |                                                                              |  |  |  |
|                             | concentration, or temperature) on a                                                                     | 0   | Describe, in terms of LeChatelier's principle,                               |  |  |  |
|                             | system at equilibrium.                                                                                  |     | the effects of stress on a given system at                                   |  |  |  |
| 0                           | According to LeChatelier's principle, a                                                                 |     | equilibrium, including:                                                      |  |  |  |
|                             | system at equilibrium will " <u>shift</u> " to                                                          |     | € Changing the                                                               |  |  |  |
|                             | reduce the effects of a stress placed on the                                                            |     | temperature/heating/cooling                                                  |  |  |  |
|                             | system. It will "shift" AWAY from an                                                                    |     | € Changing the concentration of a reactant                                   |  |  |  |
|                             | INCREASE and will "shift" <i>toward</i> a <i>decrease</i> in <u>concentration</u> or <u>temperature</u> |     | or product                                                                   |  |  |  |
|                             | ("shift" means that either the forward or                                                               |     | € Changing the pressure or volume (this affects systems involving gases)     |  |  |  |
|                             | the reverse reaction will be " <u>favored</u> " (go                                                     | 0   | Also be able to explain why any shifting                                     |  |  |  |
|                             | <i>faster</i> ) until the rates are again equal and                                                     | 0   | occurs in terms of Collision Theory                                          |  |  |  |
|                             | equilibrium is re-established).                                                                         |     | could in terms of compton filterry                                           |  |  |  |
| 0                           | Changing the <u>pressure</u> or <u>volume</u> only                                                      |     |                                                                              |  |  |  |
|                             | affects systems that contain gases                                                                      |     |                                                                              |  |  |  |
| 0                           | Systems in nature tend to undergo ch                                                                    | ang | ges toward lower energy                                                      |  |  |  |

| Name:                       |                             | Date:             |                        |
|-----------------------------|-----------------------------|-------------------|------------------------|
| <b>Chemistry</b> ~ Ms. Hart | Chemistry ~ Ms. Hart Class: | Anions or Cations | SCHOOL<br>FOR CRIMINAL |

## 7.6 **REVIEW**

The chemical reaction between methane and oxygen is represented by the potential energy diagram and balanced equation below.



**Reaction Coordinate** 

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(\ell) + 890.4 \text{ kJ}$ 

- 60 Which potential energy interval in the diagram represents the activation energy of the forward reaction? [1]
- 61 Explain, in terms of collision theory, why a lower concentration of oxygen gas decreases the rate of this reaction. [1]

Several steps are involved in the industrial production of sulfuric acid. One step involves the oxidation of sulfur dioxide gas to form sulfur trioxide gas. A catalyst is used to increase the rate of production of sulfur trioxide gas. In a rigid cylinder with a movable piston, this reaction reaches equilibrium, as represented by the equation below.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) + 392 \text{ kJ}$$

- 79 Explain, in terms of collision theory, why increasing the pressure of the gases in the cylinder increases the rate of the forward reaction. [1]
- 80 Determine the amount of heat released by the production of 1.0 mole of SO<sub>3</sub>(g). [1]
- 81 State, in terms of the concentration of  $SO_3(g)$ , what occurs when more  $O_2(g)$  is added to the reaction at equilibrium. [1]

For #79, you need to use the words: collisions, reaction rate and concentration in your answer!