Unit 8 NAME Class Work 3/29/14

8.9 Ideal Gas/Kinetic Molecular Theory

Objective

SWBAT define an ideal gas

# Agenda:

- SPARK/Objective
- Notes
- Practice
- Homework



# What would happen if...

Aerosol cans usually come with a "Do not incinerate" and a "Store above 120 F" warning label.



What do you think would happen if we lit an aerosol can on fire or we kept it in a room hotter than 120 F?

# The Kinetic Molecular Theory

 Defines the assumptions we make about gases in order to make understanding their behavior more manageable

# All gas particles are hard, tiny spheres



# The volume/size of gas particles are negligible compared to the distance between the particles

Gas Particle 1 Gas Particle 2

Compared to the space between the molecules, the gas particles are SO tiny that we say that the actual size of the particle doesn't matter.

# The particles move in a random, straight line motion hitting the walls of the container



# There are NO forces of attraction between the particles

http://www.chm.davidson.edu/vce/
kineticmoleculartheory/basicconcepts.html

# The kinetic energy of the particles is directly proportional to the temperature

```
http://www.phy.ntnu.edu.tw/ntnujava/
index.php?topic=296.0
```

# Brainstorm: What are some complications?

In reality, gases are complicated because...

### Practice

- 1. Which statement describes the particles of an ideal gas according to the kinetic molecular theory?
- (1) The gas particles are arranged in a regular geometric pattern.
- (2) The gas particles are in random, constant, straightline motion.
- (3) The gas particles are separated by very small distances, relative to their sizes.
- (4) The gas particles are strongly attracted to each other.

# When does a real gas act like an ideal gas?

#### HIGH TEMPERATURE

**Reason:** High temperature = fast movement. Therefore, less interaction between particles and fewer opportunities for attraction.

#### LOW PRESSURE

Reason: At low pressure, gas molecules have more space to move around so that their size doesn't matter and there are fewer opportunities for interaction

http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=296.0

## **RECAP**

|            | Temperature | Pressure | Volume |
|------------|-------------|----------|--------|
| Definition |             |          |        |
| Units      |             |          |        |

# Recap

|            | Temperature                       | Pressure           | Volume                   |
|------------|-----------------------------------|--------------------|--------------------------|
| Definition | Measure of average kinetic energy | Force on an object | Space an object takes up |
| Units      | K (for gases)                     | kPa                | cm <sup>3</sup>          |

# How do we count gas particles???

1 mole (6.022 x 10<sup>23</sup> particles) of gas ALWAYS
 TAKES UP 22.4 L of space at STP



## What does this mean?

 At the same temperature, pressure, and volume, every gas has the same amount of particles REGARDLESS OF IDENTITY.

#### **PRACTICE:**

Which two samples of gas at STP contain the same total number of molecules?

- (1) 1 L of CO(g) and 0.5 L of  $N_2(g)$
- (2) 2 L of CO(g) and 0.5 L of  $NH_3(g)$
- (3) 1 L of  $H_2(g)$  and 2 L of  $Cl_2(g)$
- (4) 2 L of  $H_2(g)$  and 2 L of  $Cl_2(g)$

Why do you think we can make this assumption that at the same temperature, volume, and pressure, the exact same number of gas particles are present?

# What would happen if...

Aerosol cans usually come with a "Do not incinerate" and a "Store above 120 F" warning label.



According to the kinetic molecular theory, what would happen if we lit an aerosol can on fire or we kept it in a room hotter than 120 F?

## 8.9 Classwork

#### **REMINDER:**

- The Kinetic Molecular Theory (KMT) states:
  - Gas particles are hard, tiny spheres
  - The volume of a gas particle is insignificant compared to the space it is occupying
  - Gas particles move in random, straightline motion, colliding into walls and each other
  - No forces of attraction between molecules
  - The hotter the temp is the faster the movement of particles
- Gases with the same temperature, volume, and pressure have the same number of particles regardless of identity. (AT STP, 22.4 L = 1 mole of gas)

### HOMEWORK

Finish 8.9 Classwork/Homework