Sta	ation - Balancing Equations and Activity Series			
1.	In which type of chemical reaction do two or more reactants combine to form one product, only? A) synthesis B) decomposition	 6. Given the balanced equation representing a reaction: 4Al(s) + 3O₂(g) → 2Al₂O₃(s) Which type of chemical reaction is represented by this equation? 		
	C) single replacement D) double replacement			
2.	Given the balanced equations representing two chemical reactions:	A) double replacementB) single replacementD) synthesis		
	$\begin{array}{l} Cl_2 + 2NaBr \rightarrow 2NaCl + Br_2 \\ 2NaCl \rightarrow 2Na + Cl_2 \end{array}$	 7. Given the balanced equation: 2KClO₃ → 2KCl + 3O₂ Which type of reaction is represented by this equation? A) synthesis A) decomposition 		
	Which type of chemical reactions are represented by these equations?			
	A) single replacement and decomposition	C) single replacement D) double replacement		
	B) single replacement and double replacementC) synthesis and decomposition	8. Given the balanced equation:		
	D) synthesis and double replacement	$AgNO_{3}(aq) + NaCl(aq) \rightarrow NaNO_{3}(aq) + AgCl(s)$		
3.	reaction:	This reaction is classified as		
	$\operatorname{Zn}(s) + \operatorname{H}_2\operatorname{SO}_4(\operatorname{aq}) \to \operatorname{ZnSO}_4(\operatorname{aq}) + \operatorname{H}_2(g)$	A) synthesisB) decompositionC) single replacementD) double replacement		
	Which type of reaction is represented by this equation?	9. Given the reaction:		
	A) decompositionB) double replacementC) single replacementD) synthesis	$Mg(s) + 2 AgNO_3(aq) \rightarrow Mg(NO_3)_2(aq) + 2 Ag(s)$		
4.	 Which balanced equation represents a single-replacement reaction? A) Mg + 2AgNO₃ → Mg(NO₃)₂ + 2Ag 	Which type of reaction is represented?		
		A) single replacementB) double replacementC) synthesisD) decomposition		
	B) $2Mg + O_2 \rightarrow 2MgO$ C) $MgCO_3 \rightarrow MgO + CO_2$	10. During all chemical reactions, mass, energy, and charge are		
5	$MgCl_2 + 2AgNO_3 \rightarrow 2AgCl + Mg(NO_3)_2$	A) absorbed B) conserved		
Э.	which equation represents a decomposition reaction?	C) formed D) released		
	A) $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ B) $Cu(s) + 2AgNO_3(aq) \rightarrow$	 11. Which equation shows conservation of mass and charge? A) NH4Br → NH3+ Br2 B) 2Mg + Fe³⁺ → Mg²⁺ + 3Fe C) H2SO4 + LiOH → Li2SO4 + H2O D) Cu + 2Ag⁺ → Cu²⁺ + 2Ag 		
	$2Ag(s) + Cu(NO_3)_2(aq)$			
	C) $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ D) $KOH(2g) + HCl(2g) \rightarrow KCl(2g) + H_2O(l)$			
	$D = \operatorname{KOII}(\operatorname{aq}) + \operatorname{IICI}(\operatorname{aq}) \to \operatorname{KCI}(\operatorname{aq}) + \operatorname{II2O}(l)$			

12. Given the unbalanced equation:

 $Fe_2O_3 + CO \rightarrow Fe_1CO_2$ When the equation is correctly balanced using the *smallest* whole-number coefficients, what is the coefficient of CO?

A) 1 B) 2 C) 3 D) 4

13. Given the unbalanced equation:

 $Al + CuSO_4 \rightarrow Al_2(SO_4)_3 + Cu$ When the equation is balanced using the *smallest* whole-number coefficients, what is the coefficient of Al?

- A) 1 B) 2 C) 3 D) 4
- 14. Given the unbalanced equation:

 $Mg(ClO_3)_2(s) \rightarrow MgCl_2(s) + O_2(g)$

What is the coefficient of O₂ when the equation is balanced correctly using the *smallest* whole number coefficients?

A) 1 B) 2 C) 3 D) 4

15. Given the unbalanced equation:

 $_Al(s) + _O_2(g) \rightarrow _Al_2O_3(s)$

When this equation is correctly balanced using smallest whole numbers, what is the coefficient of $O_2(g)$?

A) 6 B) 2 C) 3 D) 4

16. Given the unbalanced equation:

 $Na + H_2O \rightarrow H_2 + NaOH$

When the equation is correctly balanced using the smallest whole-number coefficients, the coefficient for H₂O is

A) 1 B) 2 C) 3 D) 4

17. Given the balanced equation representing a reaction: $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$

What is the total number of moles of $O_2(g)$ required for the complete combustion of 1.5 moles of $C_3H_8(g)$?

A) .30 mol	B) 1.5 mol
C) 4.5 mol	D) 7.5 mol

18. Given the balanced equation representing a reaction:

 $Mg(s) + Ni^{2+}(aq) \rightarrow Mg^{2+}(aq) + Ni(s)$ What is the total number of moles of electrons lost by Mg(s) when 2.0 moles of electrons are gained by $Ni^{2+}(aq)$?

A)	1.0 mol	B)	2.0 mol
C)	3.0 mol	D)	4.0 mol

19. Given the balanced equation representing a reaction: $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ What is the mole ratio of CO(g) to CO₂(g) in this reaction?

A) 1:1 B) 1:2 C) 2:1 D) 3:2

20. Given the balanced equation:

 $CaCO_{3}(s) + 2HCl(aq) \rightarrow$ $CaCl_{2}(aq) + H_{2}O(\ell) + CO_{2}(g)$

What is the total number of moles of CO₂ formed when 20. moles of HCl is completely consumed?

A)	5.0 mol	B)	10. mol
C)	20. mol	D)	40. mol

21. Given the balanced equation:

 $2C + 3H_2 \rightarrow C_2H_6$ What is the total number of moles of C that must completely react to produce 2.0 moles of C_2H_6 ?

A)	1.0 mol	B)	2.0 mol
C)	3.0 mol	D)	4.0 mol