1. In which type of chemical reaction do two or more reactants combine to form one product, only?
A) synthesis
B) decomposition
C) single replacement
D) double replacement
2. Given the balanced equations representing two chemical reactions:
$\mathrm{Cl}_{2}+2 \mathrm{NaBr} \rightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2}$
$2 \mathrm{NaCl} \rightarrow 2 \mathrm{Na}+\mathrm{Cl}_{2}$
Which type of chemical reactions are represented by these equations?
A) single replacement and decomposition
B) single replacement and double replacement
C) synthesis and decomposition
D) synthesis and double replacement
3. Given the balanced equation representing a reaction:
$\mathrm{Zn}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
Which type of reaction is represented by this equation?
A) decomposition
B) double replacement
C) single replacement
D) synthesis
4. Which balanced equation represents a single-replacement reaction?
A) $\mathrm{Mg}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
B) $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
C) $\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$
D) $\mathrm{MgCl}_{2}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{AgCl}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
5. Which equation represents a decomposition reaction?
A) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
B) $\mathrm{Cu}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow$

$$
2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
$$

C) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
D) $\mathrm{KOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)$
6. Given the balanced equation representing a reaction:
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
Which type of chemical reaction is represented by this equation?
A) double replacement
B) single replacement
C) substitution
D) synthesis
7. Given the balanced equation:
$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
Which type of reaction is represented by this equation?
A) synthesis
B) decomposition
C) single replacement
D) double replacement
8. Given the balanced equation:
$\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{s})$
This reaction is classified as
A) synthesis
B) decomposition
C) single replacement
D) double replacement
9. Given the reaction:

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s})
$$

Which type of reaction is represented?
A) single replacement
B) double replacement
C) synthesis
D) decomposition
10. During all chemical reactions, mass, energy, and charge are
A) absorbed
B) conserved
C) formed
D) released
11. Which equation shows conservation of mass and charge?
A) $\mathrm{NH}_{4} \mathrm{Br} \rightarrow \mathrm{NH}_{3}+\mathrm{Br}_{2}$
B) $2 \mathrm{Mg}+\mathrm{Fe}^{3+} \rightarrow \mathrm{Mg}^{2+}+3 \mathrm{Fe}$
C) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{LiOH} \rightarrow \mathrm{Li}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{Cu}+2 \mathrm{Ag}^{+} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{Ag}$
12. Given the unbalanced equation:
$\mathrm{Fe}_{2} \mathrm{O}_{3}+\ldots \mathrm{CO} \rightarrow$ __ $\mathrm{Fe}+\ldots \mathrm{CO}_{2}$
When the equation is correctly balanced using the smallest whole-number coefficients, what is the coefficient of CO ?
A) 1
B) 2
C) 3
D) 4
13. Given the unbalanced equation:
$\ldots \mathrm{Al}+\ldots \mathrm{CuSO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{Cu}$
$\overline{\text { When the equation is balanced using the smallest }}$ whole-number coefficients, what is the coefficient of Al ?
A) 1
B) 2
C) 3
D) 4
14. Given the unbalanced equation:

$$
\ldots \mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow \ldots \mathrm{MgCl}_{2}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g})
$$

What is the coefficient of O_{2} when the equation is balanced correctly using the smallest whole number coefficients?
A) 1
B) 2
C) 3
D) 4
15. Given the unbalanced equation:

$$
\ldots \mathrm{Al}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

When this equation is correctly balanced using smallest whole numbers, what is the coefficient of $\mathrm{O}_{2}(\mathrm{~g})$?
A) 6
B) 2
C) 3
D) 4
16. Given the unbalanced equation:

$$
__\mathrm{Na}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\sim}{\mathrm{H}_{2}}+\ldots \mathrm{NaOH}
$$

When the equation is correctly balanced using the smallest whole-number coefficients, the coefficient for $\mathrm{H}_{2} \mathrm{O}$ is
A) 1
B) 2
C) 3
D) 4
17. Given the balanced equation representing a reaction:
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
What is the total number of moles of $\mathrm{O}_{2}(\mathrm{~g})$ required for the complete combustion of 1.5 moles of $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$?
A) .30 mol
B) 1.5 mol
C) 4.5 mol
D) 7.5 mol
18. Given the balanced equation representing a reaction:
$\mathrm{Mg}(\mathrm{s})+\mathrm{Ni}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{Ni}(\mathrm{s})$
What is the total number of moles of electrons lost by $\mathrm{Mg}(\mathrm{s})$ when 2.0 moles of electrons are gained by Ni^{2+} (aq)?
A) 1.0 mol
B) 2.0 mol
C) 3.0 mol
D) 4.0 mol
19. Given the balanced equation representing a reaction: $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$ What is the mole ratio of $\mathrm{CO}(\mathrm{g})$ to $\mathrm{CO}_{2}(\mathrm{~g})$ in this reaction?
A) $1: 1$
B) $1: 2$
C) $2: 1$
D) $3: 2$
20. Given the balanced equation:

$$
\begin{aligned}
& \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \\
& \quad \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

What is the total number of moles of CO_{2} formed when 20. moles of HCl is completely consumed?
A) 5.0 mol
B) $10 . \mathrm{mol}$
C) $20 . \mathrm{mol}$
D) $40 . \mathrm{mol}$
21. Given the balanced equation:
$2 \mathrm{C}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
What is the total number of moles of C that must completely react to produce 2.0 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$?
A) 1.0 mol
B) 2.0 mol
C) 3.0 mol
D) 4.0 mol

