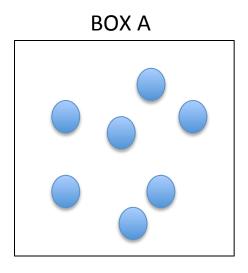
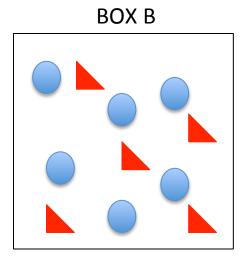
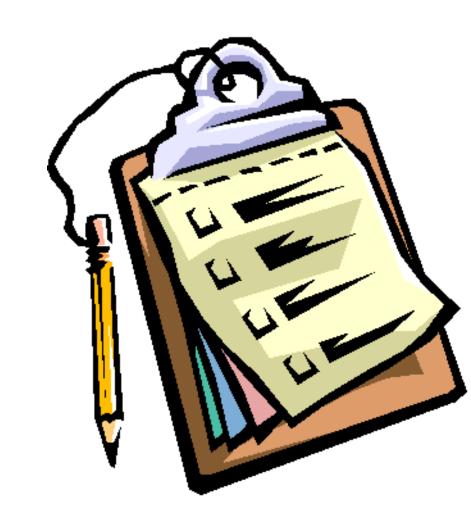

Unit 8 Class Work


NAME 3/29/14


8.8 Colligative Properties

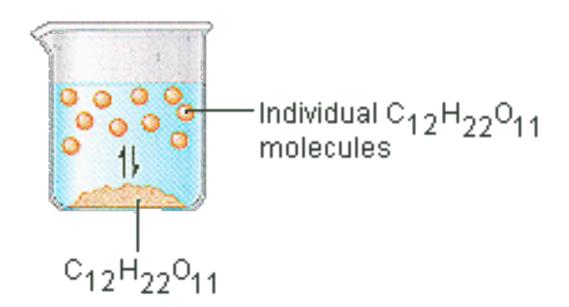
SPARK

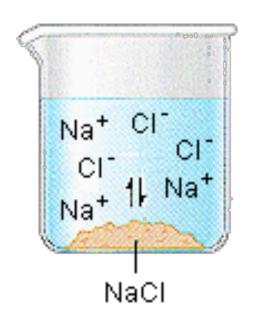
You want to freeze the water (represented by a circle) so that it becomes ice. Knowing that freezing is an exothermic process, which box (Box A or Box B) would release more energy in order for water to freeze? Why?


Objective

Where are we?

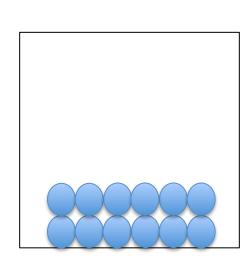
Lecture	Lesson
8.1	What is a solution and the parts of a solution? KEY POINT: Solutions are homogenous mixtures that are made up of the solute and the solvent.
8.2	What factors determine the solubility of a substance? KEY POINT: Temperature, Pressure, and Polarity affect the solubility of a solute in solution.
8.3	How do you determine if a ionic compound is soluble in water? KEY POINT: A solubility table (Table F) can tell us whether ionic salts are soluble in water.
8.5	How do you determine the saturation of a solution? KEY POINT: A solubility curve (Table G) can help you determine whether a solution is unsaturated, supersaturated, or saturated.
8.7	How do you determine the exact concentration of a solution? KEY POINT: The concentration of a solution measures how much solute is present for a defined amount of solution. It is measured in molarity or ppm.

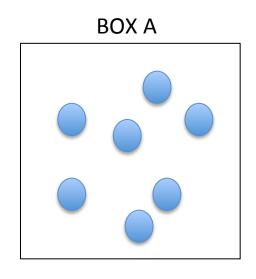

Agenda:

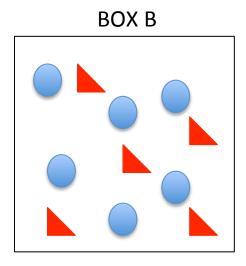

- SPARK/Objective
- Notes
- Practice
- Homework

Review-Ionic versus Covalent in solution

- How are these two beakers different?
- Ionic solids SEPARATE IN SOLUTION!




Let's review quickly...


	Molecular Compounds	Ionic Compounds
What are they?	2 or more non-metals bonded together	1 NM and 1 metals/ polyatomic ions bonded together
How are they bonded?	Sharing of valence electrons	Transfer of valence electrons
What happens when they dissolve in water?	Intermolecular interactions with the solvent	lons separate in solution
Example	$C_6H_{12}O_6$ (s) $\rightarrow C_6H_{12}O_6$ (aq)	NaCl (s) → Na ⁺ (aq) + Cl ⁻ (aq)

Let's go back to the SPARK

 You want to freeze the water (represented by a circle) so that it becomes ice. Knowing that freezing is an exothermic process, which box (Box A or Box B) would release more energy in order for water to freeze? Why?

Colligative Properties

 A property that depends only on the number of dissolved particles of solute rather than the IDENTITY of the solvent

With your neighbors... explain whats happens to freezing point and boiling point in the presence of a solute. DEFEND YOUR ANSWER!

	FREEZING POINT	BOILING POINT
Definition	Temperature at which a substance goes from liquid to solid	Temperature at which a substance goes from liquid to gas
How does the presence of a solute affect it?	LOWERS THE FREEZING POINT	RAISES THE BOILING POINT
How does the number of particles affect it?	More particles = LOWER FP	More particles = HIGHER BP

KEY POINT

FREEZING POINT DEPRESSION BOILING POINT ELEVATION

Number of particles is solution is important!

Compound	Ionic compound or	Number of Particles
	Molecular compound?	in an aqueous
		solution
NaCl	ionic	2
CaCl ₂	ionic	2
CO ₂	Covalent/ molecular	1
Ca(NO ₃) ₂	ionic	3
NH ₄ Cl	ionic	2

Classwork

Complete your 8.8 classwork!

HOMEWORK

Finish 8.8 Classwork/Homework