Unit 7 Class Work

NAME 2/27/14

SPARK

- 1. What is
- 2. What fac
- 3. How doe reaction

re? action? nemical

Unit 7 Class Work

NAME 2/27/14

7.2 Equilibrium

SPARK Take out 7.1 WS

- 1. What is another way to describe temperature?
- 2. What factors affect the rate of a chemical reaction?
- 3. How does surface area affect the rate of a chemical reaction?
- 4. Add kinetics and rate of reaction to your glossary sheets!

Objective

SWBAT define equilibrium

Agenda:

- SPARK/Objective
- Notes
- Practice
- Homework

SIX FLAGS DUE!

• NOW!

What is equilibrium?

 In a chemical REACTION, reactants collide to form a new PRODUCT (substance).

Objective: SWBAT define equilibrium

Notes

- Chemical reactions proceed from LEFT (reactant side) to RIGHT (product side)
- BUT! Chemical reactions can also go in the REVERSE direction
 - —From RIGHT (product) to LEFT (reactant)

Notes

- When the FORWARD reaction is happening at the same RATE as the REVERSE reaction, the reaction is in EQUILIBRIUM.
- We represent reactions that can reach equilibrium with a double arrow

Observe and Learn!

$$CuSO_4 + NaOH = Na_2SO_4 + Cu(OH)_2$$

Time	Observation	Which reaction rate is faster? (forward or reverse?)
Before reaction		
First seconds of the rxn		
2 minutes after the rxn		

Notes

 Reactions will reach equilibrium no matter how much reactant/product with start with!
 After reaching equilibrium, the concentrations will be CONSTANT.

Physical Equilibrium

Equilibrium can also occur for PHYSICAL changes

To summarize!

- Reactants combine to form products (FORWARD reaction)
- Products break apart and turn back to reactants (REVERSE reaction)
- EVENTUALLY, it looks like nothing is changing. However, #1 and #2 start happening at the same time. Then, the reaction is HAPPY! This is equilibrium.

TAKE ME HOME

When a chemical reaction reaches equilibrium, the RATE of the forward and reverse reaction is the same and the CONCENTRATION of reactants and products are CONSTANT

COMMON Regents Example

 State, in terms of concentration, evidence that the system in the flask has reached equilibrium.

> Concentration of Reactant and Products Versus Time

Classwork

Complete questions #1-20 in your packet!

Exit Ticket

Complete your 7.2 Exit Ticket

HOMEWORK

Finish the questions in your packet AND read pages 538-540 AND 553-554