\qquad Chemistry ~Ms. Hart Class: Anions or Cations

6.8 Chemical Reactions - Lab \#17

Background

1. Synthesis reactions Two or more reactants combine to make 1 new product. Examples: C(s)+ $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{3}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
2. Decomposition reactions A single reactant breaks down to form 2 or more products. Examples:

$$
\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

3. Single-replacement reactions A single element replaces a similar element of an adjacent reactant compound. Examples: $\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
4. Double-replacement reactions Two ionic compounds exchange ions, producing 2 new ionic compounds. Examples: $\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{s}) \quad \mathrm{HCl}(\mathrm{aq})+$ $\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
5. Combustion reactions A single element or compound combines with oxygen gas releasing energy. This rapid oxidation is called burning. Examples: $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+$ energy $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})+$ energy $2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO} 2(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ energy

National Science Education Standards
This activity is appropriate for high school students and addresses the following National Science Education Standards for grades 9-12:
Science as Inquiry: Abilities Necessary to Do Scientific Inquiry; Understandings About Scientific Inquiry Physical Science: Structure and Properties of MatterChemical Reactions; Interactions of Energy and Matter

Procedure

Decomposition activity

1. Pour the yeast from the test tube into the flask containing the 20 mL of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$. The yeast contains the enzyme catalase that decomposes hydrogen peroxide. What gas or gases could be produced?
2. Write a balanced equation for this decomposition reaction if O_{2} and water are the products.

Double-replacement activity

3. Pour the baking soda (sodium hydrogen carbonate, NaHCO_{3}) from the spoon into the $250-\mathrm{mL}$ beaker containing the vinegar (acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$).
4. Describe what happens.
5. Complete and balance the equation below for this reaction:

$$
\begin{equation*}
\mathrm{NaHCO}_{3}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \quad(\mathrm{aq})+ \tag{aq}
\end{equation*}
$$

6. One of the products, carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$, immediately decomposes into water and a gas. Complete and balance this equation, and identify the gas with a flaming or glowing splint:

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+ \tag{g}
\end{equation*}
$$

\qquad

Conclusion: describe the purpose of this lab and the reason why we have to balance chemical equations.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	Exceeding Standards	Met Standards	Approaching Standards	Initiating Standards
Data, Observation, Data Analysis	\square Data is properly recorded \square All balanced equations are correct	\square Data is properly recorded 2 out of 3 balanced equations are correct	\square Data is properly recorded 1 out of 3 balanced equations are correct	$\begin{array}{cl}\square & \text { Data is incomplete. } \\ \text { o balanced equations } \\ \text { are correct }\end{array}$
Conclusion	- Answers the purpose of the lab ㅁ Clearly explains the need to balance chemical equations.	\square Answers the purpose of the lab \square Explains the need to balance chemical equations.	- Answers the purpose of the lab - Attempts to explain the need to balance chemical equations.	ㅁ Doesn't answer the purpose of the lab Attempts to explain the need to balance chemical equations.

