\qquad

6.7- Mole and Unit 6 Practice

3. Given the balanced equation representing a reaction:
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O} 2(\mathrm{~g}) 2 \mathrm{CO} 2(\mathrm{~g})$
What is the mole ratio of $\mathrm{CO}(\mathrm{g})$ to $\mathrm{CO} 2(\mathrm{~g})$ in this reaction?
(1) $1: 1$
(2) $1: 2$
(3) $2: 1$
(4) $3: 2$
4. Given the balanced equation representing the reaction between propane and oxygen:
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
According to this equation, which ratio of oxygen to propane is correct?
(1)
$\frac{5 \text { grams } \mathrm{O}_{2}}{1 \text { gram } \mathrm{C}_{3} \mathrm{H}_{8}}$
$\frac{\operatorname{gram~}_{3} \mathrm{H}_{8}}{1 \text { moles } \mathrm{O}_{2}}$
(2)
$\frac{10 \text { grams } \mathrm{O}_{2}}{11 \text { grams } \mathrm{C}_{3} \mathrm{H}_{8}}$
(3) $\frac{11 \text { grams } \mathrm{C}_{3} \mathrm{H}_{8}}{10 \text { moles } \mathrm{O}_{2}}$
(4) $\frac{11 \text { moles } \mathrm{C}_{3} \mathrm{H}_{8}}{11}$

Name: \qquad Date: \qquad
Chemistry ~Ms. Hart Class: Anions or Cations

6.7- Mole and Unit 6 Practice

1. Given the balanced equation representing a reaction:
$\mathrm{Mg}(\mathrm{s})+\mathrm{Ni}^{2+}(\mathrm{aq}) \mathrm{Mg}^{2+(a q)}+\mathrm{Ni}(\mathrm{s})$
What is the total number of moles of electrons lost by $\mathrm{Mg}(\mathrm{s})$ when 2.0 moles of electrons are gained by $\mathrm{Ni} 2+(\mathrm{aq})$?
(1) 1.0 mol
(2) 2.0 mol
(3) 3.0 mol
(4) 4.0 mol
2. Given the balanced equation representing a reaction:
$\mathrm{C}_{3} \mathrm{H} 8(\mathrm{~g})+5 \mathrm{O} 2(\mathrm{~g}) 3 \mathrm{CO} 2(\mathrm{~g})+4 \mathrm{H} 2 \mathrm{O}(\mathrm{g})$
What is the total number of moles of $\mathrm{O} 2(\mathrm{~g})$ required for the complete combustion of 1.5 moles of $\mathrm{C}_{3} \mathrm{H} 8(\mathrm{~g})$?
(1) .30 mol
(2) 1.5 mol
(3) 4.5 mol
(4) 7.5 mol
3. Given the balanced equation representing a reaction:
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O} 2(\mathrm{~g}) 2 \mathrm{CO} 2(\mathrm{~g})$
What is the mole ratio of $\mathrm{CO}(\mathrm{g})$ to $\mathrm{CO} 2(\mathrm{~g})$ in this reaction?
(1) $1: 1$
(2) $1: 2$
(3) $2: 1$
(4) $3: 2$
4. Given the balanced equation representing the reaction between propane and oxygen:
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ According to this equation, which ratio of oxygen to propane is correct?
(1) $\frac{5 \text { grams } \mathrm{O}_{2}}{1 \text { gram } \mathrm{C}_{3} \mathrm{H}_{8}}$

5 moles O_{2}
(2) 1 mole $\mathrm{C}_{3} \mathrm{H}_{8}$
$\frac{10 \text { grams } \mathrm{O}_{2}}{11 \text { grams } \mathrm{C}_{3} \mathrm{H}_{8}}$
(3)
(4)
$\frac{10 \text { moles } \mathrm{O}_{2}}{11 \text { moles } \mathrm{C}_{3} \mathrm{H}_{8}}$
5. Given the unbalanced equation:
\qquad $\mathrm{Fe}_{2} \mathrm{O}_{3}+-\mathrm{CO} \rightarrow$ \qquad $\mathrm{Fe}+$ \qquad When the equation is correctly balanced using the smallest whole-number coefficients, what is the coefficient of CO ?
(1) 1
(2) 2
(3) 3
(4) 4
6. What is the total mass of 2.0 moles of $\mathrm{H} 2(\mathrm{~g})$?
(1) 1.0 g
(2) 0.0 g
(3) 2.0 g
(4) 1.5 g
7. What is the mass in grams of 2.0 moles of NO ?
(1) 92
(2) 60 .
(3) 46
(4) 30 .
8. The total number of moles represented by 20 grams of CaCO_{3} is
(1) 1
(2) 2
(3) 0.1
(4) 0.2
9. A substance has an empirical formula of CH 2 and a molar mass of 56 grams per mole. The molecular formula for this compound is
5. Given the unbalanced equation:
\qquad $\mathrm{Fe}_{2} \mathrm{O}_{3}+$ \qquad $\mathrm{CO} \rightarrow$ \qquad $\mathrm{Fe}+\ldots$ (When the equation is correctly balanced using the smallest whole-number coefficients, what is the coefficient of CO ?
(1) 1
(2) 2
(3) 3
(4) 4
6. What is the total mass of 2.0 moles of $\mathrm{H} 2(\mathrm{~g})$?
(1) 1.0 g
(2) 0.0 g
(3) 2.0 g
(4) 1.5 g
7. What is the mass in grams of 2.0 moles of NO 2 ?
(1) 92
(2) 60 .
(3) 46
(4) 30.
8. The total number of moles represented by 20 grams of CaCO_{3} is
(1) 1
(2) 2
(3) 0.1
(4) 0.2
9. A substance has an empirical formula of CH 2 and a molar mass of 56 grams per mole. The molecular formula for this compound is
(1) CH 2
(1) CH_{2}
(2) $\mathrm{C}_{4} \mathrm{H}_{6}$
(3) C 4 H 8
(4) $\mathrm{C} 8 \mathrm{H}_{4}$
10. What is the gram-formula mass of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$?
(1) $112 \mathrm{~g} / \mathrm{mol}$
(2) $121 \mathrm{~g} / \mathrm{mol}$
(3) $149 \mathrm{~g} / \mathrm{mol}$
(4) $242 \mathrm{~g} / \mathrm{mol}$
11. The molar mass of $\mathrm{Ba}(\mathrm{OH}) 2$ is
(1) 154.3 g
(2) 155.3 g
(3) 171.3 g
(4) 308.6 g
12. What is the percent composition by mass of sulfur in the compound MgSO_{4} (gram-formula mass $=120$. grams per mole)?
(1) 20%
(2) 27%
(3) 46%
(4) 53%
13. Given the balanced equation representing a
reaction:
$\mathrm{H}+(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq}) \mathrm{H} 2 \mathrm{O}()+55.8 \mathrm{~kJ}$
In this reaction there is conservation of
(1) mass, only
(2) mass and charge, only
(3) mass and energy, only
(4) mass, charge, and energy
(2) $\mathrm{C}_{4} \mathrm{H}_{6}$
(3) C 4 H 8
(4) $\mathrm{C}_{4} \mathrm{H}_{4}$
10. What is the gram-formula mass of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$?
(1) $112 \mathrm{~g} / \mathrm{mol}$
(2) $121 \mathrm{~g} / \mathrm{mol}$
(3) $149 \mathrm{~g} / \mathrm{mol}$
(4) $242 \mathrm{~g} / \mathrm{mol}$
11. The molar mass of $\mathrm{Ba}(\mathrm{OH})_{2}$ is
(1) 154.3 g
(2) 155.3 g
(3) 171.3 g
(4) 308.6 g
12. What is the percent composition by mass of sulfur in the compound MgSO_{4} (gram-formula mass $=120$. grams per mole)?
(1) 20%
(2) 27%
(3) 46%
(4) 53%
13. Given the balanced equation representing a reaction:
$\mathrm{H}+(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq}) \mathrm{H} 2 \mathrm{O}()+55.8 \mathrm{~kJ}$
In this reaction there is conservation of
(1) mass, only
(2) mass and charge, only
(3) mass and energy, only
(4) mass, charge, and energy

