Unit 6
Class Work

NAME 2/7/14

6.6 Moles Day 1

SPARK

Try balancing the following equations:

$$_{---}$$
H₂ + $_{---}$ I₂ \rightarrow $_{----}$ HI

$$\underline{\hspace{1cm}}$$
 $N_2 + \underline{\hspace{1cm}}$ $H_2 \rightarrow \underline{\hspace{1cm}}$ NH_3

$$\underline{\qquad} Rb + \underline{\qquad} S_8 \rightarrow \underline{\qquad} Rb_2S$$

Objective

SWBAT explain what a mole is and convert between moles of reactants and moles of products using the mole ratio.

SPECIAL ANNOUNCEMENT

- FIELD TRIP!
- Six Flag is happening: May 9th!
- Permission slips AND money due NEXT WEEK!

Agenda:

- SPARK/Objective
- Mole Walk
- Recap
- Practice
- Homework

Mole Walk

- Walk around the room to the different stations and write down the substance, formula, mass and at least two observations!
- Try to figure out what is similar about all of these stations (think about topics of Unit 6!)

Actual Commality

 There is ONE mole of each of these substances on display!

THE MOLE

A mole is a counting unit.

Just like:

- >12 eggs equals a *dozen* eggs
- >144 pencils equals one *gross* of pencils
- >60 seconds equals one *minute*
- >500 sheets of paper equals one *ream*

- Avogadro's Number
 One mole equals 6.022 x 10 particles/ atoms.
- This is known as Avogadro's number.
- We can use this to calculate the total amount of atoms of a given substance

So one mole of...

...doughnuts is 6.02 x 10²³ doughnuts

... Ostriches is 6.02 x 10²³ ostriches

...oxygen atoms is 6.02 x 10²³ atoms of oxygen

...oxygen molecules is 6.02 x 10²³ molecules of oxygen

Key Ideas

- A mole is equal to NUMBER particles/things/ grams/atoms/ etc.
- We use THE MOLE to describe the number of atoms in an element or compound because it is a faster way of explaining how much stuff we are dealing with.
- The COEFFICIENT in front of the element or compound tells us how many MOLES we have.

Example:

$$2 Al + 3 CuSO4 \rightarrow Al2(SO4)3 + 3 Cu$$

How many moles of Al do we have?

What is the mole to mole ratio of Al to CuSO-4?

Let's Practice

- Complete the first page of your notes sheet
- Do not fill out the "What kind of reaction is this?" section... we will be learning this next week!

Notes

- Stoichiometry is simply converting one value from one UNIT to another.
 - Example: Converting gram to moles or moles of one compound to another.
- We can figure out the number of moles of compound produced as long as we know the mole-to-mole ratio

Let's See It

Notes

Atomic MASS is represented in the units GRAMS per mole (g/mol)

- 1. What is the atomic mass of oxygen? (Hint: Look on your periodic table)
- 2. What unit is the atomic mass of oxygen in?
- 3. How many grams does 1 mole of oxygen weigh?
- 4. How many grams does 1 mole of phosphorous weigh?
- 5. What is the gram formula mass of H_2O ?

Check it Out!

HOMEWORK

Complete 6.6 Homework! Read pages 80-85