

5.9 Molecular Geometry

SHAPE 1-Name:		3-D Picture
\# of atoms connected to central atom:	\# of lone pairs on central atom:	

SHAPE 2 - Name:		3-D Picture
\# of atoms connected to central atom:	\# of lone pairs on central atom:	

SHAPE 3-Name:		3-D Picture
\# of atoms connected to central atom:	\# of lone pairs on central atom:	

SHAPE 4-Name:		3-D Picture
\# of atoms connected to central atom:	\# of lone pairs on central atom:	

| SHAPE 5 - Name: | 3-D Picture |
| :--- | :--- | :---: |
| \# of atoms connected to
 central atom: | \# of lone pairs on central atom: |\quad.

Time for some... MARSHMOLECULES!

Directions: First, create the 5 molecular shapes from the tables above out of the marshmallows and toothpicks provided. Then draw the Lewis Dot diagram for each of the chemical formulas below. Use this, your notes on VSEPR theory, your marshmolecule structures to determine the shape each molecule will have in the third column.

FORMULA	Lewis Dot Structure	
BH $_{3}$ (remember Boron is an exception and can be satisfied with six electrons)		SHAPE
$\mathbf{C H}_{4}$		

BONUS: Draw the Lewis Dot Structure for the molecules below, create the molecule with your marshmallows and toothpicks and draw the picture of what the molecule will look like.

1) $\mathrm{C}_{2} \mathrm{H}_{6}$
2) $\mathrm{C}_{2} \mathrm{H}_{4}$
3) $\mathrm{C}_{2} \mathrm{H}_{2}$

If you finish all of this early, finish your lab or begin your homework: Read pages 183-186 in your textbook. Answer questions on page 185 and 187.

