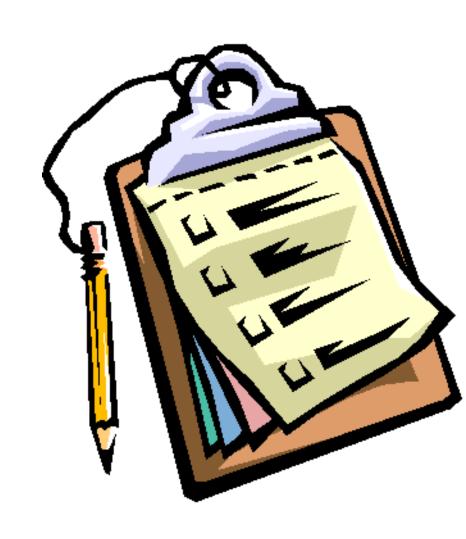
Unit 4 NAME
Class Work 11/25/13
4.2 Bohr Model-Electron Configuration

DO NOW: Complete Do Now on your guided notes sheet!

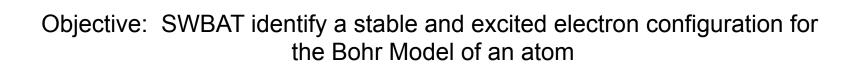

Subatomic Particle	Charge	Location in an atom	Mass
Protons			
Neutrons			
Electrons			

Objective

SWBAT identify a stable and excited electron configuration for the Bohr Model of an atom

<u>Agenda:</u>

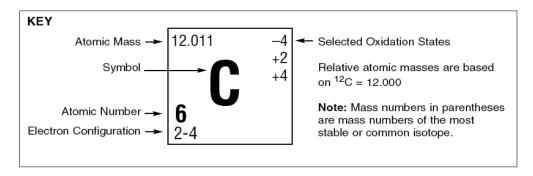
- Do Now
- Thought Provoker
- Bohr Model
- Electron Configuration
- Edible Atoms Lab
- Ground & Excited State
- Kinesthetic Demo
- Classwork
- Exit Ticket
- Homework



Thought Provoker (5 minutes)

- Directions: Read the excerpt from your textbook about the Bohr Atomic Model (annotating the text as always!) and answer the questions below.
 - In the box, draw what you think the Bohr atomic model looks like.

Thought Provoker (5 minutes)


 How is the Bohr Model different from Rutherford model?

Key Ideas of Bohr Model

- Electrons move in specific circles (energy levels) around the central nucleus
- The farther away the circles are from the nucleus, the more energy they have

Electron Configurations

Complete questions 1-9 on your guided notes sheet to discover what electron configurations are!

Objective: SWBAT identify a stable and excited electron configuration for the Bohr Model of an atom

Edible Atoms Lab Activity

- Task: demonstrate knowledge of the Bohr atom by creating and analyzing models made out of M & M
- You have 30 minutes to complete this activity.

	Description of what is happening	What will happen to the electron?
Photon		
Photon		

Objective: SWBAT identify a stable and excited electron configuration for the Bohr Model of an atom

Ground & Excited State

KEY IDEA: As the electron loses energy, it emits a photon, which is a flash of beautifully colored light.

Objective: SWBAT identify a stable and excited electron configuration for the Bohr Model of an atom

Kinesthetic Demonstration

 Directions: Ms. Hart will demonstrate how an electron releases a photon (light) that we see as the beautiful colors we learned about yesterday in class.

Do you see a pattern?

Element	Ground State	Excited State(s)
Carbon	2-4	2-3-1 or 1-5
Oxygen	2-6	2-5-1 or 1-7
Aluminum	2-8-3	2-7-4 or 2-8-2-1
Phosphorus		
Calcium		

- 1. Does the total number of electrons in an element change when the atom is in the ground state or the excited state?
- 2. How would you describe the difference between the ground state electron configuration and the excited state configuration?

Check for Understanding (1min)

 Directions: Answer the following question and wait to share your responses. What is a possible excited state configuration of Neon?

- (1) 2-2
- (2) 2-5
- (3) 2-8
- (4)1-2

Check for Understanding (1min)

- 2.What is the ground state configuration of Neon?
- (1)3-7
- (2)2-9
- (3) 2-7
- (4) 2-7-1

Classwork (10-20 mins)

Quietly and in groups

http://education-portal.com/ academy/lesson/the-bohr-modeland-atomic-spectra.html#lesson

Exit Ticket

Complete your 4.2 Exit Ticket SILENTLY!

HOMEWORK

Complete 4.2 HW