Unit 3 NAME Class Work 10/31/13

#### 3.3 Thomson's Model

#### **SPARK**

- 1) Identify the number of atoms for each element for Ca(OH)<sub>2</sub>
- 2) What does the picture to the right represent?

# Objective

SWBAT relate experimental evidence from Thomson's experiment to his atomic model and describe the key concepts of the atomic model.

# Agenda:

- SPARK
- Objective
- Notes
- Practice
- Homework



### Dalton's Atomic Model



## Charges of Particles

Charges can be positive, negative or neutral.

Unlike charges?

Like charges?

### **Guided Reading Questions**

- Underline answers to the following questions:
  - 1. What is a cathode ray tube?
  - 2. What is the purpose of this experiment?
  - 3. What is Thomson's hypothesis?
  - 4. What was his experimental setup?
  - 5. What were the results?
  - 6. What were his conclusions?

These are the "main ideas." Write which question they answer in the margin. Follow the rest of our annotation strategies in the margin

## What is a cathode ray tube?



Cathode ray tubes pass electricity through a gas that is contained at a very low pressure.

### **Guided Reading Questions**

- Underline answers to the following questions:
  - 2. What is the purpose of this experiment?
  - 3. What is Thomson's hypothesis?
  - 4. What was his experimental setup?
  - 5. What were the results?
  - 6. What were his conclusions?

These are the "main ideas." Write which question they answer in the margin. Follow the rest of our annotation strategies in the margin

#### PAIR-SHARE

 Compare what you annotated with your neighbor and explain your rationale

### Purpose

 Understand what is the charge of these particles (cathode ray)

# Hypothesis

 The cathode ray particles are negatively charged.

### Experiment

- Put electric plates (one positive, one negative)
  along a cathode ray tube and observed
  whether or not the ray was deflected.
- Put a magnet along the side of the tube to see if the magnet attract or repel.

#### Results 1

Cathode ray was attracted to positive side of the electric plate and the magnet.

#### Conclusion 1

There must be particles that are negatively charged. We call them electrons.

How did Thomson know that the cathode ray in the cathode ray tube was negatively charged?

## Results/Conclusion 2:

Results: Charge to mass ratio is extremely large

#### **Conclusion:**

- □Electrons mass is very very small (smaller than hydrogen atom).
- □Electron must be inside of an atom, the atom must contain other particles that account for most of the mass.

### Results/Conclusion 3:

- □Results: Constant charge to mass ratio for different gases (elements).
- □ Conclusion: All elements must contain identically charged electrons.

### Thomson's Atomic Model

Atoms contain negatively charged particles, electrons



### Thomson's Atomic Model

 These electrons are small compared to the rest of the atom.



### Thomson's Atomic Model

Thomson knew atoms are neutral, so there must be positive particles in the atom to balance the negative charge of the electrons.



## Plum Pudding Model





- Plums = electrons
- Pudding = positively charged surrounding

Why did he think "the pudding" was the positively charged?

Why did he think the "pudding" was most of the mass and volume of the atom?

### <u>Summary</u>

- Atoms have electrons -> negatively charged
- Atoms are overall neutral ->must have + particles
- Electrons mass is SO small -> much smaller than the overall mass of an atom -> something else in the atom must make up most of mass of the atom
- All elements had the same charge to mass ratio ->all elements have electrons and all electrons are the same

### **HOMEWORK**