Unit 2 Class Work NAME 10/10/13

2.8 Heating Curve II

SPARK

 Complete the first page of the Phase Change Worksheets

Objective

SWBAT describe the shape of a heating or cooling curve as a substance changes from a solid to a gas.

Cations

Binder Quiz!

Agenda:

- SPARK
- Objective
- Review
- Analogy
- Homework

Phase Changes

Heating Curves

 Heating curves show how the temperature changes as a substance is heated up.

Let's Label this!

Physical Properties on a Heating Curve

B = melting point temperature at which solid intermolecular bonds are broken, turning substance into a liquid.

Melting, also known as FUSION What does intermolecular mean?

Physical Properties on a Heating Curve

D = boiling point

temperature at which liquid intermolecular bonds are broken, turning substance into a gas.

Boiling, also known as VAPORIZATION

Heating Curves

What's Happening on a Heating Curve?

SECTION	What's happening?	# of Phases Present	PE or KE
AB	Heating of a solid	1	KE increases
ВС	Melting of a solid	2	PE increases, KE constant
CD	Heating of a liquid	1	KE increases
DE	Boiling of a liquid	2	PE increases, KE constant
EF	Heating of a gas	1	KE increases

Lab #4

- Construct a graph using the data points that make the most sense to you (every 60 seconds?)
- Answer conclusions questions in paragraph form on the back!

HOMEWORK

Complete Phase Change Worksheets

Extra

Phase Changes - Energy

- In order to change the phase of a substance, energy must be absorbed or released in the form of heat.
- At <u>higher temperatures</u>, particles have more kinetic energy and can <u>move further apart</u>, overcoming the *intermolecular forces*.

SOLID

vibration only

close together

LIQUID

some rotation, vibration and translation

further apart

GAS

mainly translation

very far apart

Phase Changes

When you are going from the solid phase to a gaseous phase, it is endothermic, energy needs to be added.

- Temperature is increased
- Particles are spread further apart

Phase Changes

When you are going from the gaseous phase to a solid phase, it is exothermic, energy is released.

- Temperature is decreased
- Particles are brought closer together

During the phase change, temperature does not increase or decrease. All energy absorbed or released goes into rearranging the particles in the material (potential energy!)