Unit 2 Class Work NAME 10/10/13

2.6 Heat and Temperature

SPARK - Answers to 2.5 HW from Textbook! Check your answers to last night's homework assignment to review for your quiz!

Agenda:

SPARK

Quiz

Objective

Heat and Temperature

Activity

Homework

Unit 2 Quiz 1

Objective

SWBAT explain the relationship between temperature and heat and describe the direction of heat transfer.

Energy

Energy comes in many forms

- moving an object mechanical energy
- forming a new compound chemical energy
- generating light electrical energy

heat – thermal energy

fotolia

fotolia

Energy

The Joule (J) is the SI unit for energy.

There are **two types** of energy:

- 1. Kinetic energy: the energy of motion
- 2. Potential energy: the energy of potential

Heat

Heat is the transfer of energy (represented by "q") between two objects at different temperatures.

Temperature

Temperature is the average kinetic energy of the particles in an object

- Objects at a higher temperature have more kinetic energy and particles move faster
- Object at a lower temperature have less kinetic energy and particles move slower.

Temperature

- 0 degrees Kelvin is defined as the temperature at which the average kinetic energy is ZERO

This is the idea of freezing people

Heat vs. Temperature An Exploration!!

Rules!

- 1. 1 post-it equals 1 Joule.
- 2. Each student represents a particle.
- 3. You may only pass a post-it to another student with less post-its than you.
- 4. Some of you will start with TEN post-its.
- 5. Others will start with ONE post-it.

Heat vs. Temperature Debrief

Answer these questions with your group:

- 1. What did you notice about the number of post its or kinetic energy that students had at the beginning versus after 3 minutes?
- 2. How does this relate to a hot cup of coffee that you leave out for a while?
- 3. Why did we have the rule that you can only pass a post-it to someone with less post-its than you? How does this represent the direction of heat transfer?

Application

STOP AND JOT (alone)

- How does this relate to placing an ice cube in cold water?

KEY IDEA

Heat always moves from a higher temperature to a lower temperature.

HOMEWORK

2.6 HW sheet

Unit 2 Class Work NAME 10/10/13

2.7 Heating Curve

<u>SPARK</u>

- The temperature of a sample of matter is a measure of the
 - a. Average kinetic energy of its particles
 - b. Average potential energy of its particles
 - c. Total kinetic energy of its particles
 - d. Total potential energy of its particles

Agenda:

- SPARK
- Objective
- Review
- Analogy
- Homework

Objective

SWBAT describe the shape of a heating or cooling curve as a substance changes from a solid to a gas.

LAB #4 TIME!

- 8 minutes to complete first page
- Class wide lab
- Collect data, make a graph

Phase Changes

Heating Curves

 Heating curves show how the temperature changes as a substance is heated up.

Let's Label this!

Physical Properties on a Heating Curve

B = melting point temperature at which solid intermolecular bonds are broken, turning substance into a liquid.

Melting, also known as FUSION What does intermolecular mean?

Physical Properties on a Heating Curve

D = boiling point

temperature at which liquid intermolecular bonds are broken, turning substance into a gas.

Boiling, also known as VAPORIZATION

Heating Curves

What's Happening on a Heating Curve?

SECTION	What's happening?	# of Phases Present	PE or KE
AB	Heating of a solid	1	KE increases
ВС	Melting of a solid	2	PE increases, KE constant
CD	Heating of a liquid	1	KE increases
DE	Boiling of a liquid	2	PE increases, KE constant
EF	Heating of a gas	1	KE increases

HOMEWORK

Finish 2.5 HW

Work on argumentative paper

Update glossary

Complete any missing assignments