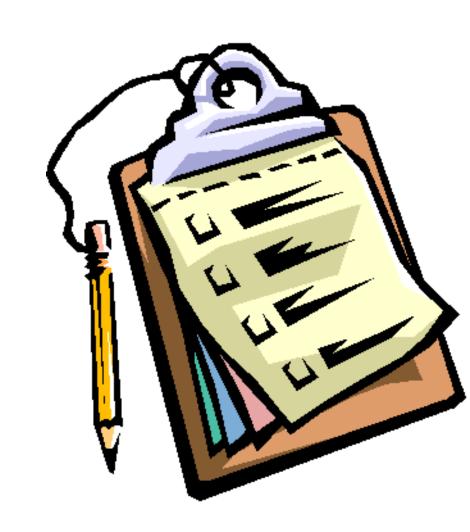
Unit 2 Class Work NAME 10/10/13

2.6 Heat and Temperature

SPARK - Answers to 2.5 HW from Textbook! Check your answers to last night's homework assignment to review for your quiz after the fire drill!

Agenda:

SPARK


Quiz

Objective

Heat and Temperature

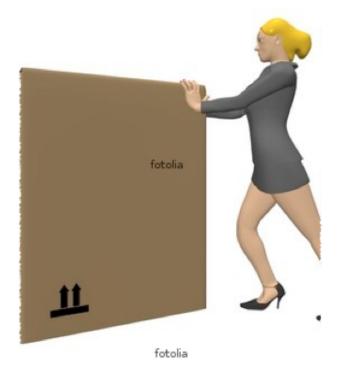
Activity

Homework

Unit 2 Quiz 1

Objective

SWBAT explain the relationship between temperature and heat and describe the direction of heat transfer.


Energy

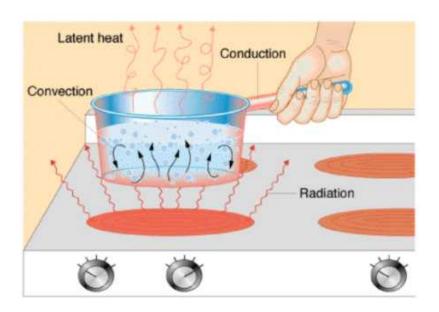
Energy comes in many forms

- moving an object mechanical energy
- forming a new compound chemical energy
- generating light electrical energy

heat – thermal energy

fotolia

Energy


The Joule (J) is the SI unit for energy.

There are **two types** of energy:

- 1. Kinetic energy: the energy of motion
- 2. Potential energy: the energy of potential

Heat

Heat is the transfer of energy (represented by "q") between two objects at different temperatures.

Temperature

Temperature is the average kinetic energy of the particles in an object

- Objects at a higher temperature have more kinetic energy and particles move faster
- Object at a lower temperature have less kinetic energy and particles move slower.

Temperature

- 0 degrees Kelvin is defined as the temperature at which the average kinetic energy is ZERO

This is the idea of freezing people

Heat vs. Temperature An Exploration!!

Rules!

- 1. 1 post-it equals 1 Joule.
- 2. Each student represents a particle.
- 3. You may only pass a post-it to another student with less post-its than you.
- 4. Some of you will start with TEN post-its.
- 5. Others will start with ONE post-it.

Heat vs. Temperature Debrief

Answer these questions with your group:

- 1. What did you notice about the number of post its or kinetic energy that students had at the beginning versus after 3 minutes?
- 2. How does this relate to a hot cup of coffee that you leave out for a while?
- 3. Why did we have the rule that you can only pass a post-it to someone with less post-its than you? How does this represent the direction of heat transfer?

Application

STOP AND JOT (alone)

- How does this relate to placing an ice cube in cold water?

KEY IDEA

Heat always moves from a higher temperature to a lower temperature.

HOMEWORK

2.6 HW sheet