Unit 2 NAME Class Work 10/23/13

2.13 Calorimetry Lab

SPARK (ANSWER in COMPLETE SENTENCES!)

- 1. In what direction does heat always flow?
- 2. What equation do we use to determine the heat required to change the temperature of a substance?
- 3. What equation do we use to determine the heat required for a phase change?
- 4. What is the heat required to melt 10 grams of water?

Reminders

- Marking Period 2!
- Ice Cream lab is:
 - Cations = THURS
 - Anions = WEDS
 - Bring your own topping and add-ins!

Misconceptions:

- the process is not a heating curve a heating curve is used to represent the process of heating!
- It's not flat molecules! When the line is flat, the molecules are going through a phase change!
- Releasing energy = releasing heat = getting
 COLDER!

1. The specific heat capacity of ethanol is 2.44 J/(g*°C). Why is more heat required to raise the temperature of a given mass of water a given number of degrees than is needed to raise the same mass of ethanol (a liquid) by the same number of degrees?

2. If the temperature of 34.4 g of ethanol increases from 25.0°C to 78.8°C, how much heat has been absorbed by the ethanol?

3. A 4.50-g nugget of pure gold absorbed 276 J of heat. What was the final temperature of the gold if the initial temperature was 25.0°C? The specific heat capacity of gold is 0.129 J/(g*°C)

4. A 155-g sample of an unknown substance was heated from 25.0°C to 40.0°C. In the process, the substance absorbed 5696 J of energy. What is the specific heat of the substance?

ANSWERS TO THE BACK

- 5. (4)
- 6. (3)
- 7. (2)
- 8. (4)
- 9. (4)

QUESTIONS??

TASK:

 Determine the specific heat capacity of brass and compare this calculated value with the known value!

• 1 mL = 1 g`

HOMEWORK

Finish the lab!

QUIZ TOMORROW (phase changes, heating curve, calculating heat!)