Unit 12 Class Work NAME 5/21/14

12.2 Isomers

<u>SPARK</u> (submit your green book assignment in the bin) Complete your SPARK on your guided notes!

Objective

SWBAT define and draw isomers

Document Camera – SPARK review

SPARK

Blast From the Past!

- 31 Compared to the atoms of nonmeta 37 Given the balanced equation representing a the atoms of metals in Period 3 have reaction:
 - fewer valence electrons
 - (2) more valence electrons
 - (3) fewer electron shells
 - (4) more electron shells

 $2H_2 + O_2 \rightarrow 2H_2O$

What is the mass of H_2O produced when 10.0 grams of H_2 reacts completely with 80.0 grams of O_0 ?

- 38 Given two formulas representing the same compound:
- (3) 180. g (4) 800. g

Formula A Formula B

 CH_3 C_2H_6 33

Which statement describes these for

- Formulas A and B are both emp
- (2) Formulas A and B are both mol
- (3) Formula A is empirical, and f molecular.
- (4) Formula A is molecular, and formula B is empirical.

33 Which atom in the ground state requires the least amount of energy to remove its valence electron?

- (1) lithium atom
- (3) rubidium atom
- (2) potassium atom (4) sodium atom

Agenda:

- Do Now/Objective
- Review of Organic Chemistry
- Mini-Lesson
- Practice Time!
- Exit Ticket

Organic Chemistry

 The Study of compounds containing Carbon

- How many valence electrons does an atom of carbon have?
- Carbon can form up to how many bonds?

Catalyzing Thoughts!

Draw the molecule C_4H_{10} below:

•Did everyone's models look the same? Explain:

Isomers

Compounds with the same molecular formula, but different structural formula:

Butane	2-methylpropane
H H H H	H—————————————————————————————————————

Isomer questions

- The compounds CH₃CH₂OCH₂CH₃ and CH₃CH₂CH₂CH₂OH
 - (1) Hydrocarbons (3) allotropes
 - (2) isomers (4) carbohydrates
- The compound C₄H₉OH is an isomer of
 - (1) $C_3H_7COCH_3$ (3) $C_2H_5OC_2H_5$
 - (2) $CH_3COOC_2H_5$ (4) CH_3COOH

Isomer questions

 If a compound has a molecular formula of CH₂O₂, then its structural formula must be

Isomer questions

The structural formulas

- Represent molecules which both are
- (1) halogen addition (3) members of alkynes
- (2) unsaturated hydrocarbons (4) isomers of butane

Side Chains

 are one way to create isomers of hydrocarbons.

- methyl group hangs off 2nd C atom
- longest chain is 4 C's long = butane

2,2 dimethyl propane

- 2 methyl groups both hang off 2nd C atom
- longest unbroken chain is 3 C's = propane

Naming Steps: Doc Camera

Naming Practice

- Longest chain: _____
 carbons; second part of name:
- Number carbons in longest chain: _____ number that side chain is attached:

- Name of side chain:
- Full name:

More practice!

$$CH_3-CH_2-CH_2-CH_3$$
 $H-c-c-H$ $H-c-H$ $H-c-$

From naming to drawing

2-methylbutane

• 3-ethyl,2-methylpentane

• 2,2-dimethylpropane

Exit Ticket

- Complete your 12.2 Exit Ticket
- When you are finished resume working on your homework!

Homework

Complete the rest of the 12.2 HW