Name: \_\_\_\_\_

Date: \_\_\_\_\_

HURBAN ASSEMBLY SCHOOL FOR CRIMINAL

*Chemistry* ~ *Ms. Hart* <u>Class:</u> Anions or Cations

# **12.2 Isomers - Guided Notes**

| Blast From the Past!                                                                                                                                                                                                          |                                                                                                                      |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----|
| 31 Compared to the atoms of nonmetals in Peri <sup>37</sup> the atoms of metals in Period 3 have                                                                                                                              | Given the balanced equation representing reaction:                                                                   | g a |
| <ul><li>(1) fewer valence electrons</li><li>(2) more valence electrons</li></ul>                                                                                                                                              | $\rm 2H_2 + O_2 \rightarrow 2H_2O$                                                                                   |     |
| <ul><li>(3) fewer electron shells</li><li>(4) more electron shells</li></ul>                                                                                                                                                  | What is the mass of $H_2O$ produced we 10.0 grams of $H_2$ reacts completely we 80.0 grams of $O_2$ ?                |     |
| 38 Given two formulas representing the same compound:                                                                                                                                                                         | e 70.0 g (3) 180. g<br>90.0 g (4) 800. g                                                                             |     |
| Formula A Formula B                                                                                                                                                                                                           |                                                                                                                      |     |
| $CH_3$ $C_2H_6$ 33<br>Which statement describes these formulas?                                                                                                                                                               | 3 Which atom in the ground state requires<br><i>least</i> amount of energy to remove its vale<br>electron?           |     |
| <ol> <li>Formulas A and B are both empirical.</li> <li>Formulas A and B are both molecular.</li> <li>Formula A is empirical, and formula 1 molecular.</li> <li>Formula A is molecular, and formula B is empirical.</li> </ol> | <ul> <li>(1) lithium atom</li> <li>(2) potassium atom</li> <li>(3) rubidium atom</li> <li>(4) sodium atom</li> </ul> | l   |
| Catalyzing thoughts:                                                                                                                                                                                                          |                                                                                                                      |     |

• Did everyone's drawing look the same? Explain:

Isomers:

Compounds with the same molecular formula, but different structural formula:

| Butane | 2-methyl propane |
|--------|------------------|
|        |                  |
|        |                  |
|        |                  |
|        |                  |
|        |                  |

- Similarities:
- Differences:



#### Here is how you name these hydrocarbons: **STEP 1: Find the longest chain of carbons**

1) If no branches, name is easy-methane, ethane...

 $CH_3^-CH_2^-CH_2^-CH_2^-CH_3^-$  2) If there is a branch, the longest chain determines second part of name: CH<sub>2</sub> The longest chain has: \_\_\_\_\_ carbons, so the second part is: \_\_\_\_\_

### STEP 2: Assign each carbon in the parent chain a number, starting with the carbon closest to the branch.

Write in numbers above each carbon in the longest chain.

## STEP 3: How many carbons are in the branch?

- A) Branches of alkanes are always "missing" one hydrogen.
- B) The missing H is where a bond forms with a longer chain.
- C) We name these branches by replacing the –ane prefix with the prefix –yl

CH<sub>3</sub>-CH-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>3</sub> CH<sub>3</sub>

Name of side chain:

STEP 4: The side chain is numbered according to what carbon they come from in the chain.



Number of side chain: \_\_\_\_\_

STEP 5: If there are more than 1 of a specific chain the prefixes di or tri etc are used.

# STEP 6: If there are more than two different chains they are put in alphabetical order.

## Final name: \_\_\_\_\_



#### 12.2 HOMEWORK

- Compounds which have the same molecular formula but different molecular structures are called

   (1) isomers
   (3) allotropes
  - (2) isotopes (4) homologs
- 2. Which compound is an isomer of CH<sub>3</sub>CH<sub>2</sub>OH?
  (1) CH<sub>3</sub>CHO
  (3) CH<sub>3</sub>OCH<sub>3</sub>
  (2) CH<sub>3</sub>COCH<sub>3</sub>
  (4) CH<sub>3</sub>CH<sub>2</sub>COOH
- 3. Which compound is an isomer of CH<sub>3</sub>COOCH<sub>3</sub>?
  (1) CH<sub>3</sub>OCH<sub>3</sub>
  (2) CH<sub>3</sub>COCH<sub>3</sub>
  (3) CH<sub>3</sub>CH<sub>2</sub>COOH
  (4) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH
- 4. Which compound is an isomer of  $CH_3COOH$ ?

| (1) HCOOCH <sub>3</sub>                  | (3) CH <sub>3</sub> CH <sub>2</sub> OH |
|------------------------------------------|----------------------------------------|
| (2) CH <sub>3</sub> CH <sub>2</sub> COOH | (4) $CH_3COOCH_3$                      |

Name the following:

| $\begin{array}{ c c c c c } CH_3 & CH_3 & b) & CH_3 \\   &   &   & CH_3 & CH_3 \\ \end{array}$                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CH <sub>3</sub> CHCH <sub>2</sub> CHCH <sub>3</sub><br>CH <sub>2</sub><br>CH <sub>2</sub><br>CH <sub>2</sub><br>CH <sub>2</sub> CHCH <sub>2</sub> CHCH <sub>2</sub> CHCH <sub>2</sub> CHCH <sub>3</sub><br>CH <sub>3</sub> CHCH <sub>2</sub> CHCH <sub>2</sub> CHCH <sub>3</sub> |

Draw the following structural formulas:

| 2-methyl butane | 3-ethyl,2-methylpentane | 2,4dimethylhexane |
|-----------------|-------------------------|-------------------|
|                 |                         |                   |
|                 |                         |                   |
|                 |                         |                   |
|                 |                         |                   |
|                 |                         |                   |
|                 |                         |                   |

### **Review:**

Which formula may represent an unsaturated hydrocarbon?

| (1) $C_2H_6$     | (3) C <sub>3</sub> H <sub>6</sub> |
|------------------|-----------------------------------|
| (2) $C_4 H_{10}$ | (4) $C_5 H_{12}$                  |

Which is a saturated hydrocarbon?

| (1) C <sub>3</sub> H <sub>8</sub> | (3) C <sub>6</sub> H <sub>6</sub> |
|-----------------------------------|-----------------------------------|
| (2) $C_2H_5OH$                    | (4) $C_2 H_4 O_2$                 |

The compound CH3CH2CH2CH3 belongs to the series that has the general formula

| (1) CnH2n-2 | (3) CnH2n+2 |
|-------------|-------------|
| (2) CnHn-6  | (4) CnHn+6  |