Name:		Date:			HURBAN
Chemistry ~ Ms. Hart	Class:	Anions	or	Cations	SCHOOL FOR CRIMINAL
<u>11.5 Vo</u>	ltaic and	Electrolytic (<u>Cells</u>		JUSTICE
SPARK: Determine the followin Oxidation half reaction		llowing redox n (s) + Pb ²⁺ (aq) \rightarrow			
Reduction half reaction					
Oxidizing agent Number of electrons lost?				ined?	
Objective: SWBAT identify the p	parts of an	electrochemica	l cell		
NOTES: Electrochemical cell: Involves a		Voltmete	2r	and a flow of	
	Wire	Cu Flow of Elect	K+ NO ₃ Ag+ rons	Salt Bridge Ag Cathode	
	Two	types of elect	roche	emical cells	
A reaction produces a flow of elect	is an ele trons (elect	ectrochemical co tricity).	ell in v	vhich a	chemical
An	-			-	rce a – breaking apart compounds
	Copper (cathode	e ⁻ e ⁻		Zinc (anode)	

_____: site where oxidation and reduction can occur

► Cu(s) +0.34 V

 $Cu^{2+} + Zn(s) \longrightarrow Zn^{2+} + Cu(s)$

Cu²⁺ + 2 e⁻-

Important INFORMATION:

RED CAT	Reduction occurs at the CATHODE			
AN OX	Oxidation occurs at the ANODE.			

a) In the above voltaic cell, on which side does reduction occur?

- b) So, what side is the CATHODE on?
- c) In the above voltaic cell, on which side does oxidation occur?
- d) So, what side is the ANODE on?

: The flow of electrons ALWAYS goes from where they were "created/lost" (the anode) to where they are "used/gained" (the cathode). ALWAYS GOES FROM ANODE TO CATHODE!!!!

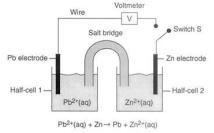
To maintain neutrality the two solutions must be connected with a device called a

____. A salt bridge allows for the migration of ions.

Using the Activity Series (Table J)

The activity series identifies the anode and cathode for a voltaic cell. The metal that is **higher** on the chart is the one that will be **oxidized** and thus is the **anode**.

Review: Which one of the following reactions happens spontaneously? Write the products.


A) $Zn + Al(NO_3)_3$

B) $Zn + Pb(NO_3)_2$

PRACTICE:

- 1) In a voltaic Cell, Oxidation occurs at the _____
- 2) In a voltaic Cell, Reduction occurs at the _____
- **3)** Given the REDOX reaction: Cu (s) + Ag⁺ \rightarrow Cu ²⁺ + Ag(s)
 - **a.** Draw a Voltaic Cell that describes the above situation. (Hint: Use the your Class Notes as a template to help you if you forget what the Voltaic Cell will look like). **Make sure to label the anode, cathode, and flow of electrons.**

Base your answers on the following diagram:

- 4) What type of electrochemical cell is this?
- 5) In which half-cell will oxidation occur when switch S is closed?
- 6) Label the following on the diagram
 - a. Anode
 - b. Cathode
- 7) Describe the direction of electron flow between the electrodes when switch S is closed.